CS562 Final Project: Real-Time Pencil
Rendering

Markel Sevilla Pelayo

DigiPen Institute of Technology Europe

Markel Sevilla CS562: Advanced Real-Time Rendering Techniques Pencil Rendering

Index
Contenido
B 1Y 1 ' o 3
W20 [1o T [Lo [3
3-Real-Time Pencil RENAEIING.........cccceuueerieeuiiirienuiiiiirniiissiriiissssaiiissesassssensssssssssssssssssssssssssssssssnsssssssnes 3
3.1- Pencil Rendering: CONCEPLUGIIYccuuueriirieeeriiiieeeriiiieniriiiienesisiieniiesissnesissssnsessssnssessssnsssssssnes 3
3.2- Approaches to Real-Time Pencil ReNderingccovveeeriirieeeriiiienesissnenesessssnessssssncsessssnssssssnes 3
4-MY IMPIEMENTALIONceuuereveniiiiieiiiiriiniiiisiiniisssisnisisstsniisssssmsssssesasssssessssssssssssssssssssssssnsssssssnsssssssnes 5
4. 1-PrepProCeSSiNg.......ccceuereenereenisiesisreesorenssssasossnssssesssssesssssssssasesssssssssssssssssssssssnsssssssssssssssnssssnssssnnas 5
4.2- RUN-TIM@ PIOCESS ..ccuuuueueeirrreeereeursiiirrrreeneussissisereseesssssissiiessseesssssssisssssesssssssssssssssesssssssssssssssnes 7
5-OULPULS AN PrODICIMS............oeeeeeeeeeeeeeeeeeieeeeetiieeseeeneessteensessesessesssnsssesssssssessessssesssssssssssnsssssssnnnnnns 10
L = 1 1 o P 10
5.2- OULPULS..cc.ceunieeiieiiiaiiiiiiriiiiiisiiinieiuiiieiiseiiseiisssisisssisssisssssssssssornsesssssssssssssssssssssssssssssssssssnsssnsasssssnss 11
5.3- PrODIEMIS. ... s s 13
6-PROS ANA CONS..........cuueeeeeeeiriiiiiiiiii s s sasssssssssssssssssssssssssssssasane 14
B.1-PROSeeeeeeeeeiieeiiiiiiiiiiiisisii st sssasssans 14
B.1-CONS......eeeeeeeeiriiiriniiisisiiisssiisssasssans 14
T-FURUIE WOTK ... s sssssssssssssssssssssssasans 14
7.1-Ink, Pen ANd CRAICOQIccuueeeeeeeeeeeeeereerereeeeerenietrerereeserreserensssenssessesessessssnssssnssesnsssssasessnssssnns 14
7.2-CUrvature GENEIrALION..........e.uuveiieireveeeeeessiiiiirereeeenesiiiiirereeemesssisieisssssemessssssssssssssssssssssssssssssssnssssns 14
7.3- Upgrade tO Digger SCENESeeeeeuneerieenniereeinsiesenississenasssssssassssssssssssssnsssssssssssssssnsssssssnsssssssnsns 15
L o1y Lol [o 15

9-BibDlIOGIAPRY.......ccueoeeeeeeiiieeeiiieisciiiiiieiiieissestieasiesttnnsiestsnsssesssssssestsnsssessssssssstsnsssssssnssssstsnssssssnnsasss 16

Markel Sevilla CS562: Advanced Real-Time Rendering Techniques Pencil Rendering

1-Abstract

This report explains my journey in the implementation of a variance in real-time pencil
rendering, based on the analysis conducted by Pohang University of Science and Technology
located in South Korea. This project presents a modular and procedural system that tries to
emulate human patterns of drawing when creating hand sketches, internal shading and erasing.
Through my implementation | have tried to adapt this paper to an already created graphics
pipeline with deferred shading while tackling the problems that the original implementation
presents.

2-Introduction

After finishing our rendering pipeline, we were able to accurately use many techniques to create
different scenes. These techniques included deferred rendering with gaussian blurred bloom,
cascaded shadow maps with percentage closer filtering, decal rendering and ambient occlusion
with bilateral filtering. With this project | tried to add a new mode to the already complete
pipeline in which | would be able to successfully depict different hand-drawn patterns of pencil,
with the possibility of expanding it to pen and ink in the future.

3- Real-Time Pencil Rendering

3.1- Pencil Rendering: Conceptually

This paper tries to realistically emulate the patterns that give life to hand-made drawings by
applying some techniques to the generated 3D meshes. Through these techniques we try to
depict the two different parts that usually compose any pencil drawn piece: contour
drawing and interior shading. We will try to create slightly inconsistent contours that subtly
differ from the real edges of the 3D mesh by applying multiple shaken layers of the contours
to the same image. For the interior shading we will make use of previously computed
textures to give the sensation of a fake lighting effect, taking as a base a vanishing point.

3.2- Approaches to Real-Time Pencil Rendering

3.2.1- Real-Time Pencil Rendering — by POSTECH

3.2.1.1- Raw explanation of the paper- System Overview

This paper presents a system overview that separates the process into two stages: the
Preprocessing and the Run-Time Process. At the same time the pipeline is differentiated into
two completely independent branches that cover the Contour Drawing and the Interior
Shading parts:

Markel Sevilla CS562: Advanced Real-Time Rendering Techniques Pencil Rendering

Preprocessing Run-time Process |
g
Contour Texture Comibour

5 Generation Shaking |
o |l | Mormal/Depth N Contouwr
= Map Renderingl| |Detection -
E Distorted Plane Multiple
=1 Generation Lime Drrawing
=
a
- Pencil Texture Brightness .
g- Generation Adjustment Composition/
- Enhancement
a .
;1 Curvabure . Texture Rotation T
= Calculation
s_ 3-Way Blending
3 Paper Normal

[Texture Generation Paper Effect

System Overview of the paper

3.2.1.2-Preprocessing

In the contour drawing section, the paper proposes to create a texture for the contour’s color for it to
resemble pencil coloring. Since contours are narrow areas, the proposed texture does not need to be of
high quality, just enough to resemble the pencil tone that we want for the mapping. In the same way, we
can precompute the distorted planes that we are later going to use for the multiple contour drawing and
contour texture superposition.

Following this idea, for the interior shading a similar thing happens. First, we precompute the hatching
textures that we are going to use to fake the shading in the later stages. The paper suggests the creation
of 32 textures that go increasing in darkness by the following formula:

o . .
& = O = UpCa,

ca = o(1.0—¢g),

In which we start with the darkness of the texture, ct, which depends on the index of the texture we are
working on. The darkness of each pixel will depend on two factors apart from the default darkness of the
texture, the darkness of the stroke itself cs, and the darkening factor ub. Through these factors the paper
determines that the maximum amount of darkness that a pixel can be darkened for each stroke is ca.

In the same way to preserve white pixels and create that pencil effect, if the pixel is white enough we will
maintain it as such multiplying it by the whitening factor uw.

On the other hand, to give the pencil textures the right orientation we must precompute the curvatures
of the vertices and create a tensor field. This precomputation is explained in another paper [Alliez et. Al.
2003] and it describes how tensor fields work and how to generate them.

Finally, to give the paper a certain roughness and that grainy effect that the material provides we are
proposed with the generation of a paper normal texture filled up with noise.

3.2.1.3 — Run-Time

For the run-time process of the contour drawing we are proposed with the rendering of normals and
depth, for the latter detection of the edges and the reconstruction of the mesh itself. With this a
detection of differences per pixel would be performed to extract the wanted edges based on a certain
threshold.

Markel Sevilla CS562: Advanced Real-Time Rendering Techniques Pencil Rendering
After the contour detection, we proceed with the mapping of the edges. In the previous section we had
precomputed distortion maps that will give the hand-made wavy effect to our texture. The optimum
amount of distortion textures for the multiple drawing is between 3 and 5, according to the research that
PosTech conducted. So, once we have the edge texture mapped on the different distortion maps, we just
must blend them, accordingly, creating that effect of various slightly different strokes.

On the other hand, for interior shading we need to start by considering the brightness of each of the parts
of the mesh. Since it’s still desirable to enforce the contrast between bright and dark textures we may
want to have great changes between shadow and light, however the fact is that it’s more important to
define the intensity variation in the brightest areas to have a better, more realistic effect. Given this case,
we will use the square root of the brightness as the index for the mapping of the hatching textures. This
index is the one that will fake the lighting, depending on the brightness of the pixel.

Next, similarly to the multiple contour drawing the shading effect in real drawings usually follows the
geometry of the mesh we are drawing. By using the minimum curvature of each vertex we can achieve
this effect simply rotating the texture in that direction. Because the geometry is defined in triangles we
will use three textures for this, thus the 3-way blending. In this way, the shading will follow smoothly the
geometry and the textures themselves will create soft curves that give drawings volume and shape.

Finally, to wrap everything up, we are proposed a simple idea to define the granularity of the paper,
which consists of doing the dot product between the previously precomputed normal and the main
direction of the strokes. This will create a sensation of roughness that complements the effect of paper
well.

4- My Implementation

4.1-Preprocessing
4.1.1 - Contour Drawing

e Contour Texture Generation: During the implementation of this project | did not find any reason
for which the texture for the contours to be generated could affect positively to the outcome.
The paper itself states that this texture can be simpler due to the narrowness of the contours,
that won’t let the details shine. Considering this and the fact that my application is extremely
modular to the point in which | constantly play with the values of the graphite’s tone | deemed it
irrelevant for my implementation, and chose to get rid of it. We can see the value with which |
modulate the color in the next line of code:

vecd newCol = wect(1.¥ - pencilTone * texture(edgeMap, distortedUVs).xyz, 1.8)

e Distorted Plane Generation: This is an indispensable step for the pipeline. In this pass we
generate the planes that we will later use to map the detected edges and create an image in
which several strokes are attempted for the same contour. For this we perform a screen space
pass in which we simply create textures that contain distorted UVs stored as colors. The paper
suggests to divide the screen in rectangles to localize these distortions, however when putting it
into practice more segments tend to affect negatively to the look of the output. In the same way,
if we choose to have different random variables for each segment, the result will deteriorate
considerably.

The distortions are bounded by a limit so that they still resemble the mesh that we are trying to
draw. The following function generates the offsets that the map will store:

(coeff.x) * cos{ coeff.y = Ws.x + coeff.z)

(coeff.x) * sinl coeff.y + Ws.y + coeff.z)

Markel Sevilla CS562: Advanced Real-Time Rendering Techniques Pencil Rendering

The coefficients used in these trigonometric functions are user defined parameters that
multiplied by previously computed random variables generate the distortions that we look for.

4.1.2 - Interior Shading

e Pencil Texture Generation: This step is the most expensive one in terms of code and time, that’s
why it is imperative to do it just once. During this pass we compute all the hatching textures that
we will later use to create a fake sensation of lighting in the drawing. Although the paper suggests
us to create 32 hatching textures, in practice computing less will most probably not affect the
result. Also, although we generate textures until the strokes are pitch black, the best-looking
results are usually given by a maximum darkness of 40%, the last 60% of textures being too dark.

Following the algorithm that | explained in the previous section, we would get the following code:

(int i = 8’ i < strokes: i++)

vec? shadedPoint = dramwStroke(UVs, vec2(8.f, strokePositions[il), randemFactors[i].xy)

(int(floor({shadedPoint.y * windowSize.y)) int(Floor{Ws.y + windowSize.yl))

(ct = 8.9)

ca ML _'W

In which we would have our base darkness and darkening factors of the following:

float ct = 1.8 - (toneIndex / 32.f)
float ca = ct = (1.8 - cs)

uniform float mu_b = 8.
uniform float mo_w = 8.!
const uniform float cs

With tonelndex being the index of the hatching texture that we are working on.
In the same way we select the pixel by creating a perturbated stroke:

vec? drawStroke(wvec? uv, vec? strokePos, wvecl randomFact)

vec2 point = mix(strokePos, wvec2(1.8, strokePos.y), uv.x)
vec2 dir = normalize(wec2(1.8, strokePos.y) - wec2(8.8, strokePos.y))

vec2 perp = vec2(-dir.y, dir.x)

float perturbation sin(randomFact.x * uw.x * frequency # 2.8 * PI) * amplitude * randomFact.y

point + perp * perturbation

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

For this we upload two SSBOs containing the starting positions of the strokes, and the
random factors that we will use to perturbate said strokes:

layout(stdd38, binding = 8) buffer StrokeBuffer

float strokePositions

layout(stdu3e, binding = 1) buffer RandomBuffer

vec2 randomFactors

Lastly, as a personal choice, all the textures start with the same base to ensure tileability
when shading, however, as the darkness increases new strokes appear in the darkest
textures. This means that if the textures start with 1000 strokes, while the lightest
texture has 1000 strokes, the darkest one will display 1310, that is 1000 (the base stroke
number) + 31(the index of the texture) * 10(100 of the base stroke number):

hatchLines + i + hatchLines / 188)°

shader—=SetUniform("strokes”,

Curvature Calculation: This pass aims to generate the minimum curvatures of each vertex
to later use them as a basis to rotate the textures. The paper does not explain much but it
redirects the reader to another paper that extensively explains how to calculate the
minimum and maximum curvatures of each vertex in a mesh through tensor fields.
However, it proved to be harder than | thought, and | was not able to correctly
implement it. In my attempts | tried to approximate it through a simplification of the
tensor fields and through the descending angle algorithm without success.

Paper Normal Texture Generation: This pass tries to give the final output the sensation
of granularity to emulate the material of paper. For this we generate a per pixel noise
texture in which we store screen space normals that define the roughness of the paper.
Although in the paper we are proposed with the generation of a 2D texture for this, we
will use an SSBO that serves the same purpose:

layout(stdd38, binding = 2] buffer PencilMoiseBuffer

vec? pencilNoise

4.2- Run-Time Process

4.2.1 - Contour Drawing

Normal/Depth Rendering: Our pipeline already made use of the Geometry Buffer to store
both depth and normal textures. In this case we stored them for deferred shading, but
since in this case we will fake all lighting and shadowing, storing just those textures would
be sufficient in any other approach.

Contour Detection: For the later edge detection pass we will need to have some
information to generate the contours of the mesh. In the paper we are advised to use a
technique that combines both depth and normal differences as explained in [Isenberg et al.
2003; Nienhaus and Doellner 2003], to detect both exterior and interior edges that are
differentiated by the z-value. Although the general thought would be that just doing a
simple differential between the neighboring four pixels of the center would be enough, in
practice it proved to be a bit underwhelming. Due to this | chose to use an 8-direction
Sobel operator to detect edges:

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

normal®@ = normalize(texture(normalMap, elSi vec2(-1,
normal@l = normalize(texture(normalMap, els vec2(-1,
normal®2 = normalize(texture(normalMap, els vec2(-1,

normall® = normalize(texture(normalMap, els vec2(8,
normalll = normalize(texture(normalMap, els vec2(8,
normall? = normalize(texture(normalMap, o vec2(8,

normal28 = normalize(texture(normalMap, vec2(1,
normal2l = normalize(texture(normalMap, vec2(1,
normal22? = normalize(texture(normalMap, vec2(1,

depthB8 = linearizeDepth((texture(depthMap, texelSize + vec2(1))}.r)
depth8l = linearizeDepth((texture(depthMap, texelSize = wec2(8l.r N
depth82 = linearizeDepth((texture(depthMap, texelSize » vec2(1D.r N

depthl® = linearizeDepth((texture(depthMap, texelSize = wvec2(8, -1)).r))
depthll = linearizeDepth((texture(depthMap, texelSize + vec2(8)).r))
depthl2 = linearizeDepth((texture(depthMap, toxelSize = wvec2(8, 1)).r))

depth28 = linearizeDepth((texture(depthMap, texelSize * wvec2(1)3.r))
depth2l = linearizeDepth((texture(depthMap, texelSize = wec2(8).r))
depth22 = linearizeDepth((texture(depthMap, texelSize = wec2(13).r))

sobelX = normalDifference(normal8@, normal2e) 8 * normalDifference(normal8l, normal2l) + normalDifference(normal®2, normal22)
sobel¥ = normalDifference(normal®®, normal82) + 2.8 + normalDifference(normall®, normalll) + normalDifference(normall8, normal22)

sobelXdepth = depthDifference(depth88, depth2e) + 2.8 depthDifference(depth@l, depth21) + depthDifference(depth@l, depth2l)
sobelYdepth = depthDifference (depth@®, depth82) + 2.8 * depthDifference(depthl®, depthl2?) + depthDifference(depth28, depth22)

edgeStrengthNormal = sgri(sobelX # sobelX + sobelY * sobelY)
edgeStrengthDepth = sqrt(scbelXdepth sobelXdepth + sobelYdepth * sobel¥depth)

The previous paper’s solution provided an approach with the usage of both normal and
depth rendering to generate the edges, and although my last implementation uses both,
the truth is that normals are enough to accurately solve the problem. Depth provides good
support for dissipation and better accuracy of interior edges, but adds the complexity of
another value to tweak, and trust me, we already have lots of these. On the same note, the
reality is that depth alone is not sufficient to set the contours. In practice, we would want
to either use only normals, or the combination of normals and depth at the expense of
more testing and extra code, but by no means would we base our detection on depth
solely.

In this part we will also use light contribution for the darkness of the edges. Once we have
detected the edges, we will use a simple dot product with the normal of the vertex to know
the light contribution at that pixel. Although the paper proposes a simple product, we will
follow the same method as in interior shading for modularity and consistency purposes, in
which we add an intensity to the light. By using the adjusted brightness (e.g. the square
root of the actual brightness), we will enforce the gradient difference in the lightest areas,
so it is more appealing:

float getLightContribution(vec2 UVs)

—

vec3 normal = ((texture(normalMap, Ws) = 2 - 1)).rgb

vec3 lightDir = normalize(vec3(viewMat + wecd(light.dir, 811)

float brightness = dot({normal,lightDir)

sqrit(brightness * light.intensity / maxIntensity)

e Contour Shaking + Multiple Drawing: In this pass we will map our previously computed
edges to the distortion maps that we had previously generated. The outcome will vary
depending on both the distortion coefficients that we had previously chosen and the
number of textures that we choose to superpose. Again, the optimal number of textures
lays in the range of 3 to 5, that’s why in this implementation | use 3. The main thing that

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

happens in this part is the mapping to the distorted textures:

vec? distortedUVs = UWs + (texture(distortionMap, UVs).xy # 2

vecl col texture(previousMap, UVs)

vect newCol vecl(1.f pencilTone * texture(edgeMap, distortedUVs).xyz, 1.8)

In here we modulate the color of the edge with pencilTone, that will make the strokes
darker or lighter.

In the same way, the blending of the textures happens manually. This was a personal
choice because | wanted to emulate the effect of darkened pixels that happened in the
hatching textures, but a common blending approach would also prove sufficient:

(prev col.r =< 8.9)
(newCol.r = @.9)

FragColor = vect(col.rgb vec3(8.1), @)

FragColor vect(col.rgb, @)

FragColor = newCol

4.2.2- Interior Shading

Brightness Adjustment: In the same way as we did in the contour detection part, we use
the light contribution with a light direction and an intensity to get the brightness at each
pixel. By using the square root, we look for the effect of more differentiated light areas
that scale smoothly. We need to keep in mind that this is the value that we use to map the
hatching texture that will shade the pixel, so we need to map it to our local system of
textures:

float brightness = dot(normal, lightDir)

float adjustedBrightness = sgrt(brightness * light.intensity)

int mappedBrightness = maxDarkness - int(floor({maxDarkness * adjustedBrightness))

Since in my implementation | give the possibility of changing the hatching texture’s
maximum darkness we will not map the brightness directly to [0, 32), instead we will use a
user defined parameter to choose the mapping range, maxDarkness.

Texture Rotation + 3-Way Blending: This pass is where the previous problem of the
curvatures will affect. The principal approach for the texture rotation would be that at each
vertex the minimum curvature in which the adjacent geometry changes would be stored,
and we would use that per vertex curvature to rotate the textures. In the same way, this is
the reason for which in the 3-way blending we superpose three textures, one per vertex
curvature. However, for time and complexity reasons it was not possible for me to find an
adequate approximation for the curvatures, so | will explain a simpler approach that gives
decent but static results.

Not having the per vertex curvatures directly translates into having a static 3-way blending.

Markel Sevilla CS500: Ray Tracing Subsurface Scattering
This means that instead of rotating the textures with per vertex angles to follow the
geometry, we rotate them by a constant factor that provides a good drawing sensation:

mat2 rotation = mat2{cos(-angle), -sin(-angle), sin(-angle), cos(-angle))

vec? newlV = rotation clampedUV
(| useCurv)

newlV = clampedUV

(color.x 1)
color = texture(hatchingTexture, wvec3(newUV, mappedBrightness / (i + 1))).rgb

color (1.f - color.x) * mu

In this case | chose to vary the rotation of the textures by 152 up and down, selecting a
brighter texture for each superposed layer to give the sensation of procedural shading.
Usually when we shade we tend to start with softer strokes, and end up with darker ones.
By using descending lighter textures we achieve that effect. In the same way we darken the
pixels that more than one stroke have shaded, to achieve the effect of superposition.

e Paper Effect: Finally, to give the overall image a more natural look we will make use of the
previously generated paper noise SSBO. If we had the curvatures of the vertices we would
be able to better represent the directions of the strokes, however, since we are using a
static approach we will assume that all our hatching lines have an horizontal direction.
Using the dot product of this direction and the randomly generated noise normals we
create a sufficiently good granularity effect:

ver2 uvs = worldBasedUV(UVs)
int indices[2 int(floor(uvs.x + windowSize.x)), int(floor(uvs.y * windowSize.y * windowSize.x))

(texture(gNormal, UVs).rgb vec3(8) usePencilNoise)

FragColor = vect(FragColor - paperfloughness * dot(vec2(1,8), vec2(vecU(vec3(normalize(pencilNoise[indices[8 indices[1), 8.8), 8.€))))

5-Outputs and Problems

5.1-Demo

This demo adds a new mode to the framework in which we will be able to tweak most of the
values and test intermediate steps:

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

The window is further differentiated in 4 sections that control different values depending on the mode and
section:
1 - Edge Detecktion

ed ge detection threshold |:||:| narmal

distortion amplitude
distar frequency
d internal offset

@, 458 pencilTone

2 - Inkternal Shading

y blending
ture for blending
46, OE hatchingAkt
5

100 hatch line number

3 - Yanishing Point
1,008 vanizshing point dir
vanishing point intensity

4 - Paper Moise
USe paper no

paper roughness

e Edge Detection: In this section we will be able to change the threshold of both depth and normals
to determine which edges to detect. In the same way we will control the shaking coefficients for
the distortion maps, that will affect the amplitude, frequency and offset of the distortion. Finally
we can change the pencil tone of the edges.

¢ Internal Shading: In this section we can choose to use 3-way blending and texture rotation to see
the differences between using them or not. We can tweak the hatching attenuation, that will adjust
the hatching textures to the mesh until we get a result we like. In the same way we can change the
base stroke number for the hatching lines, that will recompute the 32 textures. Finally, by adjusting
the maximum darkness we will be able to accurately choose the darkest texture we want.

e Vanishing Point: In this section we can change the direction and intensity of the fake directional
light that we will use to select the brightness pf each pixel.

e Paper Noise: Finally, in this section we can choose the roughness of the paper to get different
results.

5.2- Outputs

Following we will see some of the results that we can get with different values:
e Just using edge drawing:

1 - Edge Detecktion
edge dekection kthresho
edge dektection thresho
amp1itude
frequency

distortion internal of

o, 510 pencilTone

Markel Sevilla

CS500: Ray Tracing

Subsurface Scattering

e Using full shading without blending or paper texturizing:

2 - Internal Shading
way blending

ure for blending

1]

edge de ion thr
edge de ion thr
distorktion amplitude
distorktion frequency
distorktion internal of

pencilTone

hatch Tine number

vanishing poinkt dir

vanishing point intens

ading

way blending

CUY:

rtion amplitude
rtion freguency
ion inkernal o

21 1Tone

hatchingatk
i)

hatch Tine number

vanishing poinkt dir

vanizhing poinkt intens

paper roughne

£

Markel Sevilla CS500: Ray Tracing Subsurface Scattering
e Using a Sphere (with averaged normals to compensate for the simple geometry):

amp 11 tude
~tion frequency
~Eion inkernal of
pencilTone

2 - Internal S

ture for blending
11,047 hatchingAkk
&
1800 ak i number

izhing Point

1. 086 wanishing point dir

wanizhing point inktens
4 - Pape
Usg& paper

paper roug hness

5.3- Problems

In general, the whole implementation is quite intuitive, and it is layered in a way in which the
reader can program it very progressively, however, there are a few things that can cause trouble.

First, my main problem was caused by the curvatures. Although the paper of tensor fields was
complete it was physics heavy, and due to lack of time and high complexity | was not able to
correctly implement what they proposed. In my development time | tried to approximate it many
times through a simpler application of the tensor field approach, or through the angle descent
algorithm. However, my implementations did not fulfill what | was expecting, and | had to call it
off.

This part was a time-hole for me, and | spent most of my time trying new things to see if | could
create something useful.

Another problem was the hatching textures creation. If they are not generated with the same
basis when applying them the output is not correct. The sections in which brighter textures are
mapped get cut because of the inconsistencies between both. Figuring this out was quite a
challenge, but the actual implementation proved to be trivial.

Finally, the mapping of the distortions and in general the mapping of the textures was tricky.
Mainly because the algorithm works in screen space, and thus it is view dependent. Having to deal
with this and choosing what to map through world space coordinates was not easy, however it
was a matter of trial and error.

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

6- PROS and CONS

6.1-PROS
e It's very procedural and very modular to compute, thus we can create lots of different
effects

e ltis very cheap. Most things happen before the runtime application, and then it’s just a
matter of mapping.

e It's intuitive. Everything is very logical and tries to emulate what happens in real life

e Most things happen in screen-space; thus, they are easy to compute.

e |tisvery easy to expand to simulate ink, pen or charcoal.

6.1-CONS

e It can be unstable. Since distortion of maps happen in screen-space they are view dependent.
This means that distortions will vary in respect to the camera, which might not be desirable.

e |tis a double-edged weapon. Being very modular allows us to customize everything, however that
means that to achieve a singular effect a lot of testing is needed.

e The usage for big scenes is not a good idea. The edge detection happening on a threshold in
screen-space means that precision is lost with bigger z-values. The edges get blurrier and thus
more unstable. Having to tweak the values for these to happen could be a challenge.

7- Future work

7.1-Ink, pen and charcoal

A great project to implement next would be to support ink, pen and charcoal drawing. This
should be quite easy in terms of code. Most changes would need to happen in the
modularity of the color, the way in which strokes affect the drawing and the width of the
strokes themselves.

In general, it should be a matter of tweaking values and adding some new parameters to the
implementation. | am sure that experimenting could give us great results.

/.2-Curvature Generation

Another future implementation would imply generating the curvature correctly. Following
the tensor field application from [Alliez et. Al. 2003], would give my project another turn
and create a better look to the general drawing. It also is the last step that would give total
completion to my implementation of the project by PosTech.

For this | would need to go quite deep into the previously mentioned paper and try to apply
the algorithm they propose to our pipeline.

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

7.3- Upgrade to bigger scenes

Finally, I think that a great expansion would be to upgrade the algorithm to be more stable
and allow bigger scenes. A great change would be to update the algorithm, so it is not view
dependent. Using object-space or world-space coordinates to generate the contours, distort
them and map the textures would probably allow usage in any kind of enclosed or open
scenes. | believe this would be a real upgrade to the algorithm and make it useful for lots of
cases.

8- Conclusion

In general, the algorithm performs well in the cases that | have experimented with. Single
objects tend to be drawn correctly, and the effects depicted are the correct ones. Since it is
extremely modular and procedural it allows the user to see the results of intermediate steps
such as the contour drawing. This allows us to accurately choose the values that act best to
get the desired output and modulate everything to our needs.

However, this modularity is used to adapt to the needs of an object in specific, which makes
it difficult to generalize it to various objects. This effect escalates to bigger scenes, which
makes it very difficult to adjust to whole ambients or enclosed scenarios with lots of
different objects. Furthermore, the screen-space nature of the distortions act against this
generalization, making it even more difficult to create robust scenes with it.

In conclusion, the Real-Time Pencil Rendering implementation that | have conducted is a fast
and cheap way of generating real-time hand-drawn images, and although it has great results
in single objects | believe it needs to be upgraded and further explored to be used in more
general cases. Considering this | hope to be able to further upgrade it in the future, as |
believe it’s an approach with great potential.

Markel Sevilla CS500: Ray Tracing Subsurface Scattering

9-Bibliography

e Lee, H.,, Kwon,S., & Lee, S. (2006). Real-time pencil rendering. In Proceedings of the 4th
International Symposium on Non-Photorealistic Animation and Rendering (pp. 37—-45).
ACM. https://dl.acm.org/doi/10.1145/1124728.1124735

e Alliez, P., Cohen-Steiner, D., Devillers, O., Levy, B., & Desbrun, M. (2003). Anisotropic
polygonal remeshing. ACM Transactions on Graphics (TOG), 22(3), 485—493.
https://dl.acm.org/doi/10.1145/882262.882296

e Isenberg, T., Halper, N., & Strothotte, T. (2003). Stylizing silhouettes at interactive rates:
From silhouette edges to silhouette strokes. Computer Graphics Forum, 22(3), 249-258.
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.00674

e Nienhaus, M., & Déllner, J. (2003). Edge-enhancement—An algorithm for real-time non-
photorealistic rendering. Journal of WSCG, 11(2), 346—-353.
https://www.researchgate.net/publication/2572906 Edge-Enhancement -

An_Algorithm for Real-Time Non-Photorealistic Rendering

https://dl.acm.org/doi/10.1145/1124728.1124735
https://dl.acm.org/doi/10.1145/882262.882296
https://onlinelibrary.wiley.com/doi/10.1111/1467-8659.00674
https://www.researchgate.net/publication/2572906_Edge-Enhancement_-_An_Algorithm_for_Real-Time_Non-Photorealistic_Rendering
https://www.researchgate.net/publication/2572906_Edge-Enhancement_-_An_Algorithm_for_Real-Time_Non-Photorealistic_Rendering

